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We have studied the topology of the energy landscape of a spin-glass model and the effect of frustration on
it by looking at the connectivity and disconnectivity graphs of the inherent structure. The connectivity network
shows the adjacency of energy minima whereas the disconnectivity network tells us about the heights of the
energy barriers. Both graphs are constructed by the exact enumeration of a two-dimensional square lattice of a
frustrated spin glass with nearest-neighbor interactions up to the size of 27 spins. The enumeration of the
energy-landscape minima as well as the analytical mean-field approximation show that these minima have a
Gaussian distribution, and the connectivity graph has a log-Weibull degree distribution of shape �=8.22 and
scale �=4.84. To study the effect of frustration on these results, we introduce an unfrustrated spin-glass model
and demonstrate that the degree distribution of its connectivity graph shows a power-law behavior with the
�3.46 exponent, which is similar to the behavior of proteins and Lennard-Jones clusters in its power-law form.
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I. INTRODUCTION

The dynamics and structure of complex systems can be
approached via their energy landscape �1,2�; some examples
are the protein folding problem �3,4�, Lennard-Jones liquids
�5,6�, and spin glasses �7–10�. We can, however, construct
the energy landscape only for systems of small size, because
in general the phase-space volume grows exponentially as
the system’s degrees of freedom increase. To tackle the re-
striction regarding the size of the phase space, we can sustain
the key information of the landscape, such as the energy
minima �inherent structure� and transition states between
minima, and encode them into two kinds of complex net-
works �11� that are known as connectivity and disconnectiv-
ity graphs. In a connectivity network, each node represents a
local minimum energy of the system while the links are tran-
sition pathways connecting two neighboring minima. In a
disconnectivity network, each node represents a superbasin
with an energy of E. The superbasin of energy E consists of
at least two smaller superbasins, which are separated by an
energy barrier of absolute height E. In this way we can con-
struct a hierarchical tree in which each superbasin is con-
nected to its subset of superbasins. In such a tree, the root is
the largest superbasin that includes all the states, and leaves
are the local energy minima. The disconnectivity graph was
first introduced by Becker and Karplus to study peptide
structure and kinetics �12�.

Complex networks have been frequently employed to
analyze the energy landscapes of different physical systems
�13–17�. This method has also been utilized in the consider-
ation of the energy landscape of a system of Lennard-Jones
particles �13�, protein chains �18,19�, or spin glasses �20�.

Networks are usually categorized in terms of their degree
distribution, i.e., the distribution of the number of links at

each node in the network. A well-studied kind of network in
the literature is the scale-free network which has a power-
law form for the degree distribution �21�. The scale-free be-
havior has been observed in various systems such as friend-
ship and the internet �11�. The same also has been reported
by Doye in the energy landscape of a cluster of Lennard-
Jones particles �13�, and in short peptide chains by Rao and
Caflisch �18� and Gfeller et al.�19�. Burda et al. also reported
a power-law tail only for a spin-glass model embedded in a
random graph �9�; in other cases they showed that a one-
dimensional spin glass exhibits a normal or log-normal dis-
tribution of the node degree. It is still unclear if frustrated
systems with a very rough energy landscape are also scale-
free.

Spin glasses in general are good prototype models to ex-
amine the rough energy landscape of frustrated systems.
They represent a broad class of complex systems. Many in-
teresting problems are indeed analogous to spin glasses; ex-
amples are the three-satisfiability problem �22� or protein
folding �23�, setting aside the advantage of Derrida’s random
energy model �24�, which simplifies the analytical studies of
spin-glass systems, and, in part, defeats the purpose of such
studies.

This paper is organized in the following order. In Sec. II,
we obtain an analytical estimate of the probability density of
energy minima and degrees of nodes. In Sec. III, we state the
numerical method, which includes helical boundary condi-
tions, the multiple-spin method with the help of bitwise op-
erations �the most basic operators on a computer, e.g., AND

and XOR�, and a painting algorithm to label minima and their
surrounding basins. Afterward, in Sec. IV we discuss the
numerical results, and, finally, we compare our results with
other energy-landscape networks and discuss the most rel-
evant sources of differences, i.e., the presence of frustration
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and the energy density function. The concluding remarks are
presented in Sec. V.

II. MEAN-FIELD CALCULATION

We consider a random Ising model on a two-dimensional
square lattice of N sites. We represent the spin in the ith site
by si. Every spin is either up �+1� or down �−1�. We repre-
sent each configuration of the system with a vector of spins
denoted by s= �s0 ,s1 ,s2 , . . . ,si , . . . ,sN−1�. The phase space
thus consists of 2N such vectors.

We define the Hamming distance between two configura-
tions of the system in the phase space, s and s�, as the num-
ber of their mismatched elements ��1−�si,si�

�. If the distance
between two configurations is 1—–meaning that they differ
only in one spin—we call them adjacent neighbors.

We will consider a spin-glass dynamics such that spins
interact only with their adjacent neighbors. So each spin in-
teracts with four of its neighbors. We consider further that
the coupling constant of the interactions, Jij, is either +J or
−J. Then the Hamiltonian follows:

H =
1

2�
�ij�

Jijsisj , �1�

where summation is over the adjacent neighbors. We can
rewrite the Hamiltonian as H=J�n+−n−�, where n− is the
number of satisfied interactions while n+ is the number of
frustrated interactions. The sum of these two numbers is n+

+n−=2N.
The random energy model �24� assumes that the energy

density function is Gaussian:

P�E� = �N�J2�−1/2 exp�− E2/NJ2� , �2�

where the energy of a randomly chosen state of s is E.
To begin with, we would like to calculate the probability

that a given configuration s is a local minimum. To do so, we
first review the properties of local minima. The energy of a
local minimum by definition is lower than the energy of its
neighbors. Its energy, therefore, increases when we flip any
of its spins. As a result, for a local minimum configuration,
just one of the four interactions of any site can be frustrated.
In other words, there must not exist any frustrated pairs of
interactions sharing one end �spin�. Consequently, the odds
for a configuration to be a local minimum are the same as for
a configuration wherein all frustrated interactions are distinct
�isolated from each other�.

The probability to have a frustrated interaction sur-
rounded by satisfied interactions is � n−

2N
�6

, where n− is the
total number of satisfied interactions. The exponent of 6 is
due to the number of interactions that are connected to the
frustrated interaction. Since we have n+ unsatisfied �frus-
trated� interactions, the probability of having all the unsatis-

fied interactions isolated is � n−

2N
�6n+

. But here we have over-
counted some of the satisfied interactions. The overcounting
happens when a satisfied interaction has two frustrated inter-
actions at its ends. Such cases occur approximately n−� 3n+

2N
�2

times; therefore, the final probability of having a local mini-

mum with energy E is �� n−

2N
�6n+−n−9/4�n+ / N�2

. Recalling that
2N=n++n− and E

J =n+−n−, we restate the probability in
terms of E and N. This leads to

	1

2
−

E

4NJ

3/32�4+E/NJ��10+�E/NJ�2�

, �3�

which is the probability distribution function �PDF� of en-
ergy minima to be derived from

P�E� =
1

�N�J2
e−E2/NJ2	1

2
−

E

4NJ

3/32�4+E/NJ��10+�E/NJ�2�

.

�4�

Having obtained the PDF of energy minima, it is easy to
estimate the degree distribution. Each minimum is down in a
basin. The volume of a basin is proportional to e−E/J. The
number of neighbors of a basin is proportional to its volume.
Therefore, we can say that ln k�− E

J where k is the degree of
the node. Thus, the probability distribution of the degrees is
approximated by

P�k� � e−ln�k�2/N−ln�k�	1

2
+

ln�k�
4N


3/32�4−ln�k�/N��10+ln�k�2/N2�

.

�5�

We shall shortly see that Eq. �5� leads to a good approxima-
tion for the distribution. In order to further clarify Eqs. �4�
and �5� we show that within some approximations they re-
duce to familiar expressions. For small values of E

NJ we can
approximately write

	1

2
−

E

4NJ

3/32�4+E/NJ��10+�E/NJ�2�

� 2−15/4e−15E/16NJ, �6�

whose insertion into Eq. �4� leads to the Gaussian distribu-
tion of

P�E� �
1

215/4�N�J2
e−E2/NJ2−15E/16NJ. �7�

Knowing the relation between E and k �ln k�− E
J

�, we get a
simplified form for the PDF of degrees of nodes:

P�E� �
1

215/4�N�J2
e−ln�k�2/N−�1−�−15/16N��ln�k�. �8�

III. SIMULATION AND ALGORITHMS

We are going to construct the network of adjacent minima
of a spin glass with N spins and a set of given coupling
constants. We achieve this goal by first sweeping the energy
landscape. We generate all 2N configurations before calculat-
ing the energy of each configuration. Having computed the
energy of all configurations, we then find the local minima
with the help of a painting algorithm. Afterward, we con-
struct the adjacent network of the local minima. By employ-
ing the multiple-spin method, we save CPU time and
memory. This enables us to sweep the phase space corre-
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sponding to systems of up to 27 spins, with an ordinary PC
�about 3 GHz and 2 gigabytes�. We utilize the helical bound-
ary conditions to take advantage of the periodic boundary
conditions, and, furthermore, to be able to study any number
of spins, even though it is not a complete square �25�.

The helical boundary condition resembles the periodic
boundary condition but sets the last spin of a row to be the
neighbor of the first spin of the next row �Fig. 1�. The helical
boundary condition, avoiding the constraint of a square num-
ber of the lattice sites, allows for an arbitrary number of
spins, including integer numbers that are not a complete
square.

In the multiple-spin method, each spin is represented by
one single low-level bit of the computer memory: either 0 or
1. Therefore, a lattice configuration represented by s
= �1,0 ,0 ,1 ,0 ,1 ,0� becomes a binary number 1001010,
which is u=74 in the decimal base.

We can also treat the coupling constants in the same way.
The only difference is that the number of interactions is
twice the number of spins.

Now we can use bitwise operations, exclusive or �XOR�
and bit rotation, to calculate the energy of a given state. First
we calculate �u � R�u ,1�� � j_, where � is the XOR operator
and R�u ,n� rotates u by n bits. We count the number of 1’s in
the binary form of the results, which gives us the energy of
the horizontal interactions. In the same way, we calculate the
energy of vertical interactions. This time we have to rotate
the bits by the number of columns of the lattice nc, �u
� R�u ,nc�� � j. Again, we count the number of 1’s in the
binary form of the result. The sum of these two counts gives
us the total energy.

Since it is not very straightforward to deal with degener-
ate ground states in the painting algorithm, we used uni-
formly distributed coupling constants between �1, to over-
come degeneracy �31�.

Having the energy landscape, we use a painting algorithm
to find the minima. First we sort the energies from low to

high. We start from the bottom of the list and paint the first
element with a color. Then, we look at the next-lowest-
energy state. If this state is a neighbor of the former state �it
is different in only one spin�, we paint it with the same color.
If it is not a neighbor of any painted state, we associate a new
color with it. As we go up the list, if we meet a state none of
whose neighbors were painted before, it is a minimum. But if
it has painted neighbors, then we paint it with the same color
so it will belong to the same basin. In the case when it has
some neighbors that have been painted already with different
colors, this indicates a border. In this method, members of
any basin are painted with the same color and the border of
colors show the transit states.

Basins are characterized by the minimum energy, their
size, and their depth. We already know the minimum energy
of the basins. The size of a basin is the number of states that
belongs to that basin �the number of states with the same
color�. Defining the depth of a basin is more tricky. Each
basin has a border where the states over it might not have
equal energies. Therefore, knowing all of the states on the
border, we have three choices to use in defining the depth of
a basin: the average energy on the border, or the highest- or
lowest-energy barrier. Subtracting the minimum energy from
these values gives us the mean, greatest, and smallest depths,
respectively.

The connectivity graph does not give us any information
about the energy barriers; therefore, we use the information
about energy barriers to construct the disconnectivity graph
�12�. The disconnectivity graph is generated in the following
way. Imagine that the energy landscape is a real landscape
consisting of mountains and valleys. Below this landscape,
there is an underground sea. We start increasing the level of
underground water. When the water level reaches the lowest
part of the landscape, a lake starts to form. As we increase
the level of underground water, more lakes �superbasins� ap-
pear, and sometimes lakes merge and give rise to larger
lakes. Now, in our graph, each node corresponds to a lake
�superbasin�, and the links connect each lake to its
ancestors—lakes that created it by merging. In a given water
level a new lake can appear or a lake can be made by merg-
ing of other lakes; therefore, we associate a water level �en-
ergy� with each node. It shows the water level �energy� at
which the lake �superbasin� is created.

Spin glasses are well known for frustration, so one can
ask if frustration has any impact on the network topology.
We investigate this question by using coupling constants dis-
tributed between a−1 and a+1 where a is a constant. Here
a=0 means our frustrated spin-glass model and a=−1 repre-
sents a ferromagnetic Ising model. Therefore, the parameter
a controls the amount of frustration. We shall show that al-
tering a changes the shape of the degree distribution.

We are also interested in various statistical properties akin
to that of the degree distribution of the underlying graphs:
the histograms of minimum energies, basin sizes, and depths.
To have good statistics for these PDFs, we ran the enumera-
tion for different realizations of quenched random coupling
constant and then we averaged the results. Our results will be
demonstrated in the next section.
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FIG. 1. Illustration of the helical boundary condition. The lattice
has seven sites, two sites less than a complete square �nine�. Nev-
ertheless, the plane is covered by lattices consistently.
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IV. RESULTS AND DISCUSSION

The probability density function of the energy of local
minima �Fig. 2� has a distorted Gaussian shape that follows
Eq. �4�. Such a PDF of minima is also seen in the case of
Lennard-Jones �LJ� clusters �26–28�.

Moreover, we investigate the relation between the degrees
of basins and their minimum energy �Fig. 3�. As one can see,
ln k�− E

J relates the degree to the energy. This is expected
according to the argument in Sec. II. But for minima with
energies close to the global minimum, this relation no longer
holds. This might be due to the finite-size effect, as it is more
visible in smaller systems.

The histogram of the numbers of neighbors of a basin is
the next quantity to study �Fig. 4�. It is fitted to a log-Weibull
distribution, meaning that the logarithm of k follows the
Weibull distribution. The Weibull distribution �29� is a con-
tinuous probability distribution with the probability density
function

f�x;�,�� = ��

�
	 x

�

�−1

e−�x/���
if x � 0,

0 otherwise,
�

where �	0 is the shape parameter and �	0 is the scale
parameter of the distribution. The best-fit values here are �

=8.22 and �=4.84. Histograms of minimum depths also
have an exponential PDF �Fig. 7 below�, indicating many
shallow basins �small energy barriers� but very few deep
basins �tall energy barriers�.

We obtained a log-Weibull behavior for the distribution of
degrees for our spin system �Fig. 4� and a normal distribution
for the energy of the minima �Fig. 2�. The PDF of minimum
energies is scaled with the number of spins. For all system
sizes, we have a peak at about 0.5 J. Thus, for any system
size, the distribution peak is quite far from the origin. As-
suming that k�e−Emin, a log-normal behavior is expected for
the PDF of degrees. This is in agreement with Fig. 3 of Ref.
�16� for short chains of random polymers and with Fig. 9 of
Ref. �9�. There are also contrasting reports of scale-free be-
havior for the topology of the energy landscape in some
other systems �13,18�.

It is important to know why there is such a difference. We
note that these two systems—spin glasses and LJ clusters—
are both non-deterministic polynomial time �NP� problems
from the computational complexity point of view and at the
same time they are two standard models used to study com-
plex systems.

There are three main reasons for having different results
for spin glasses on one hand and for proteins and clusters of
LJ particle on the other: a spin glass is a frustrated system,
whereas the others are not. The energy density of different
systems might be different from that of a spin glass and their
data are to be interpreted in a different way.

In order to remove frustration from our model, it
is enough to use a set of random coupling constants
J� �−2,0�. This is the minimal change to our model that
abolishes frustration, while keeping the quenched random-
ness. The PDF of the degree distribution representing the
energy-landscape network of this modified system is shown
in Fig. 5. One can see that this log-log plot of the PDF
becomes similar to the function y=y0−bx−x0, in which the
slope of the power-law tail is −3.46. We already know that a
log-log plot of the same PDF for the case of a frustrated spin
glass is close to a parabola. Interestingly, the PDF in the
absence of frustration is very similar to that for proteins �18�.
In addition to the PDF of the connectivity graph, we can look
at the disconnectivity graph to compare the frustrated and
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FIG. 2. Comparison of the theoretical �line� and numerical
�circles� results. The line represents Eq. �4�. The system size here is
27 spins and the PDF is averaged over 150 realizations.
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FIG. 3. Degrees vs energy of minima. It shows that for large
systems we can consider the degree of a minimum as an exponen-
tial function of its energy: k�eEmin.
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FIG. 4. Probability density function of node degrees. Circles are
the result of simulation of 27 spins, averaged over 150 repeats.
Solid line is Weibull function.
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unfrustrated models. In Fig. 6 one can see the disconnectivity
graphs of frustrated and unfrustrated systems of 25 spins.
The graph of the frustrated system has more branches, which
means the related landscape is rougher.

Recalling the mean-field results, we see that the log-
Weibull shape of the histograms of the degrees is closely
related to the Gaussian behavior of the PDF of the energy
minima. As shown in Fig. 3, the absolute value of the mini-
mum energy of a basin is proportional to the logarithm of the
number of its neighboring basins. Then correlation between
PDFs of degrees and minimum energies is a consequence of
this logarithmic relation. Thus a power-law distribution for
the degrees �13� is the result of an exponential distribution of
energy minima. But this possibility is ruled out because in LJ
clusters the energy minima also follow a Gaussian distribu-
tion �26,30�.

Another reason for the dissimilarity is the different ways
of interpreting the results. Usually we have few samples to
calculate the probability density function directly. One way
to overcome this problem is to use the cumulative distribu-

tion function �CDF� instead of the PDF, which gives us a plot
with less noise. On the other hand, when we have data span-
ning only a few orders of magnitude, by looking at the cu-
mulative distributions, we can scarcely distinguish among
log-normal, log-Weibull, and power-law distributions.

Using a spin-glass model, we have the ability to run the
simulation with different quenched coupling constants,
which provides us with a rich statistics. Therefore, we can
look at the average distribution over many realizations of the
system instead of their cumulative distributions to reduce the
noise. In this way, it is much easier to distinguish between
these two types of functions: power law or log Weibull. Our
results are averaged over 150 realizations of a 27-spin sys-
tem and 750 when we had 25 spins.

One of our findings is the different behaviors of the mini-
mum energies on the one hand and the minimum depth of the
related basins on the other. As we mentioned before, the
minimum energies follow almost a Gaussian distribution,
whereas the minimum depths of the related basins follow an
exponentially decaying distribution �Fig. 7�. This fact sug-
gests that we face a rough landscape. It means that we cannot
define a large and smooth basin for the minima. Indeed, they
have a rough basin that is full of many shallow basins. Any
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FIG. 7. PDF of minimum depths. Minimum depth is the differ-
ence between the minimum energy of a basin and the lowest energy
on the border of that basin. It has an exponential distribution.
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ence in the energy of two connected nodes in the disconnectivity
graph. This result agrees with Fig. 7. These curves are averaged
over 200 realizations of 25 spins.
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FIG. 5. Frustration effect on the probability density functions of
degrees in energy-landscape networks. The results are for a 25-spin
system. Circles shows the PDF for a model without frustration and
triangles present the PDF of the frustrated spin-glass model. The
solid line has a slope of −3.46. This result suggests that absence of
frustration may lead to something close to a power-law tail.
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FIG. 6. �Color online� Left: disconnectivity graph of frustrated
spin glass; right: that of unfrustrated spin glass. The vertical direc-
tion represents the energy of the superbasins, in such a way that
higher nodes have larger energies. The highest and the lowest en-
ergies are noted. For better understanding, we also showed the en-
ergies in colors: red shows the lowest energy and blue represents
the highest energy. Here, the system size is 25 spins, and the cou-
pling constant of the unfrustrated spin glass is produced by shifting
the coupling constants of the frustrated model by +1.

ENERGY-LANDSCAPE NETWORKS OF SPIN GLASSES PHYSICAL REVIEW E 77, 031105 �2008�

031105-5



of these small basins may be asymmetric in such a way that
the difference between its minimum and maximum depths is
considerable. This is in agreement with our general perspec-
tive on spin-glass systems. The same conclusion is reached
via the disconnectivity graphs Figs. 6 and 8.

V. CONCLUSION

In this work we have shown that, in the case of spin
glasses, the distribution of the energy minima is Gaussian
and the network associated with the energy landscape has a
log-Weibull degree distribution. This is verified by both nu-
merical and analytical results. The result is in contrast with
the case of Lennard-Jones clusters, which have a scale-free
topology. This shows that the graph topology of an energy
landscape is not universal and is closely related to physical
properties of the model system. Our results show that the
energy density function and frustration, which are the most

distinct differences between the two systems of spin glasses
and Lennard-Jones clusters, are the most important factors.

Frustration alters the probability density function of de-
grees in the energy-landscape network and changes the shape
of the density function. In the absence of frustration, the
probability density function has a tail that can be perceived
as a power law �32�. This behavior of unfrustrated spin
glasses is similar to the behavior of proteins and Lennard-
Jones clusters; therefore, one can consider the unfrustrated
spin glass as a better alternative to the frustrated spin glass in
the study of such systems.
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